MECHANICS (C) UNIT 2 TEST PAPER 5

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

- A pump raises water from a reservoir at a depth of 25 m below ground level. The water is delivered at ground level with speed 12 ms⁻¹ through a pipe of radius 4 cm. Find
 - (i) the potential and kinetic energy given to the water each second,

[4]

(ii) the rate, in kW, at which the pump is working.

[2]

- [1 m³ of water has a mass of 1000 kg.]
- Aliya, whose mass is m kg, is playing rounders. She rounds the first base at a speed of v ms⁻¹, making the turn on a horizontal circular path of radius r m.
 - (i) Write down, in terms of m, v and r, the magnitude of the horizontal force acting on her. [1]
 - (ii) Show that if she continues on the same circular path, the reaction force exerted on her by the ground must act at an angle θ to the vertical, where $\tan \theta = \frac{v^2}{gr}$ [6]

The diagram shows a uniform lamina ABCDE formed by removing a symmetrical triangular section from a rectangular sheet of metal measuring 30 cm by 25 cm.

(i) Find the distance of the centre of mass of the lamina from ED. [3]

The lamina has mass m. A particle P is attached to the lamina at B.

The lamina is then suspended freely from A and hangs in equilibrium with AD vertical.

(ii) Find, in terms of m, the mass of P.

[5]

- A car, of mass 1100 kg, pulls a trailer of mass 550 kg along a straight horizontal road by means of a rigid tow-bar. The car is accelerating at 1.2 ms⁻² and the resistances to the motion of the car and trailer have magnitudes 500 N and 200 N respectively.
 - (i) Show that the driving force produced by the engine of the car is 2680 N. [3]
 - (ii) Find the tension in the tow-bar between the car and the trailer.

[2]

(iii) Find the rate, in kW, at which the car's engine is working when the car is moving with speed 18 ms⁻¹. [2]

When the car is moving at 18 ms⁻¹ it starts to climb a straight hill which is inclined at 6⁰ to the horizontal. If the car's engine continues to work at the same rate and the resistances to motion remain the same as previously,

- (iv) find the acceleration of the car at the instant when it starts to climb the hill. [3]
- (v) Show that tension in the tow-bar remains unchanged.

[2]

[3]

5. Take $g = 10 \text{ ms}^{-2}$ in this question.

A golfer hits a ball from a point T at an angle θ to the horizontal, where $\sin \theta = \frac{5}{13}$, giving it an initial speed of 52 ms⁻¹. The ball lands on top of a mound, 15 m above the level of T, as shown.

(i) Show that the height, y m, of the ball above T at time t seconds after it was hit is given by

$$y = 20t - 5t^2. [3]$$

- (ii) Find the time for which the ball is in flight.
- (iii) Find the horizontal distance travelled by the ball. [2]
- (iv) Show that, if the ball is x m horizontally from T at time t seconds, then

$$y = \frac{5}{12} x - \frac{5}{2304} x^2.$$
 [3]

- (v) Name a force that has been ignored in your mathematical model and state whether the answer to part (ii) would be larger or smaller if this force were taken into account. [2]
- 6. Two smooth spheres, A and B, of equal radius but of masses 3m and 4m respectively, are free to move in a straight horizontal groove. The coefficient of restitution between them is e.

 A is projected with speed u to hit B, which is initially at rest.
 - (i) Show that *B* begins to move with speed $\sqrt[3]{_7} u(1+e)$. [5]
 - (ii) Given that A is brought to rest by the collision, show that e = 0.75. [3]

Having been brought to rest, A is now set in motion again by being given an impulse of magnitude kmu Ns, where k > 2.25. A then collides again with B.

(iii) Show that the speed of A after this second impact is independent of k. [6]

MECHANICS 2 (C) TEST PAPER 5 : ANSWERS AND MARK SCHEME

- 1. (i) Volume per second = $12\pi (0.04)^2 = 0.0603 \text{ m}^3$ Mass= 60.3 kg M1 A1 P.E. gained per sec. = $60.3 \times g \times 25 = 14778 \text{ J}$ A1
 - K.E. gained per sec. = $\frac{1}{2} \times 60.3 \times 12^2 = 4342 \text{ J}$ A1
 - (ii) Power = total energy per second = $19 \ 120 \ Js^{-1} = 19.1 \ kW$ M1 A16
- 2. (i) Resultant force towards centre = mv^2/r B1
 - (ii) Forces acting on her are vertical weight = mg, reaction R at θ to vertical.

www.mymathscloud.com B1 B1

Contact with ground	l maintained, so <i>F</i>	$R\cos\theta = mg$
---------------------	---------------------------	--------------------

Horizontally:
$$R \sin \theta = mv^2/r$$

Divide :
$$\tan \theta = v^2/gr$$

3. (i)
$$750(12.5) = 180(21) + 570 \text{ y}$$

$$\bar{y} = 9.82 \text{ cm}$$

B1

$$9.816m + 13M = 12.5(m + M)$$
 $0.5M = 2.684m$

$$M = 5.37m$$

4. (i)
$$F - 700 = 1650 \times 1.2$$

$$F = 700 + 1980 = 2680 \text{ N}$$

(ii)
$$F - 500 - T = 1100 \times 1.2$$
 $T = 2180 - 1320 = 860 \text{ N}$

$$T = 2180 - 1320 = 860 \text{ N}$$

(iii)
$$P = 2680 \times 18 = 48.2 \text{ kW}$$

$$a = 0.176 \text{ ms}^{-2}$$

(iv)
$$48240 = 18(700 + 1650g \sin 6^0 + 1650a)$$

(v) For trailer,
$$T - 200 - 550g \sin 6^0 = 550(0.176)$$
 $T = 860 \text{ N}$

5. (i)
$$y = (52 \sin \theta)t - \frac{1}{2}gt^2 = 20t - 5t^2$$

(ii) Lands when
$$y = 15$$
 $t^2 - 4t + 3 = 0$ $(t-1)(t-3) = 0$

$$t^2 - 4t + 3 = 0$$

$$(t-1)(t-3) = 0$$

A1

Ball is coming down, so
$$t = 3$$

(iii) $x = (52 \cos \theta)t = 52 \times^{12}/_{13} t = 48t$

When
$$t = 3$$
, $x = 144$ m

(iv)
$$y = 20 \times \frac{x}{48} - 5 \times (\frac{x}{48})^2 = \frac{5}{12}x - \frac{5}{2304}x^2$$

6. (i) Momentum :
$$3mu = 3mv_A + 4mv_B$$

$$3v_A + 4v_B = 3u$$
$$3v_B - 3v_A = 3eu$$

Elasticity:
$$(v_B - v_A) / (-u) = -e$$

Add: $3u(1 + e) = 7v_B$

$$v_R = \sqrt[3]{7}u(1+e)$$

(ii) If
$$v_A = 0$$
, $v_B = eu$ and $4v_B = 3u$, so $e = 0.75$

(11) If
$$v_A = 0$$
, $v_B = eu$ and $4v_B = 3u$, so $e = 0.75$

(iii) Now A has speed
$$\frac{1}{3}ku$$
 $(v'_B - v)$

$$(v'_B - v'_A) / (0.75u - \frac{1}{3}ku) = -0.75$$

and
$$kmu + 3mu = 3mv'_{A} + 4mv'_{B}$$

$$ku + 3u = 3v'_A + 4(v'_A - 0.75(0.75 - \frac{1}{3}k)u) = 7v'_A - 2.25u + ku$$

 $v'_A = 0.75u$, which is independent of k

14